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Generative AI for designing and validating 
easily synthesizable and structurally  
novel antibiotics

Kyle Swanson    1,4, Gary Liu2,4, Denise B. Catacutan2, Autumn Arnold2, 
James Zou    1,3   & Jonathan M. Stokes    2 

The rise of pan-resistant bacteria is creating an urgent need for structurally 
novel antibiotics. Artificial intelligence methods can discover new 
antibiotics, but existing methods have notable limitations. Property 
prediction models, which evaluate molecules one-by-one for a given 
property, scale poorly to large chemical spaces. Generative models, 
which directly design molecules, rapidly explore vast chemical spaces 
but generate molecules that are challenging to synthesize. Here we 
introduce SyntheMol, a generative model that designs new compounds, 
which are easy to synthesize, from a chemical space of nearly 30 billion 
molecules. We apply SyntheMol to design molecules that inhibit the 
growth of Acinetobacter baumannii, a burdensome Gram-negative 
bacterial pathogen. We synthesize 58 generated molecules and 
experimentally validate them, with six structurally novel molecules 
demonstrating antibacterial activity against A. baumannii and several 
other phylogenetically diverse bacterial pathogens. This demonstrates the 
potential of generative artificial intelligence to design structurally novel, 
synthesizable and effective small-molecule antibiotic candidates from vast 
chemical spaces, with empirical validation.

The global dissemination of antibiotic resistance determinants is one of 
the most pressing challenges of modern medicine. In 2019, an estimated 
4.95 million deaths were associated with drug-resistant infections. 
This number is projected to grow to 10 million per year by 2050 as the 
propagation of antimicrobial resistance determinants continues to 
outpace the discovery of novel antibiotics1. Six bacterial species known 
as the ESKAPE pathogens are especially virulent and drug-resistant, 
posing a critical threat to medicine globally2,3. One of those patho-
gens, the Gram-negative bacterium Acinetobacter baumannii,  
is particularly burdensome in clinical settings and is recognized as 
the highest priority for new antibiotic development, according to the 

World Health Organization4. Indeed, few treatment options remain 
for A. baumannii infection and novel antibiotics are urgently needed 
to address this pathogen5.

Artificial intelligence (AI) methods have shown that they can iden-
tify promising drug candidates, including antibiotics6. One type of AI 
method that is commonly leveraged in the context of drug discovery 
is called a property prediction model, which is trained to predict drug 
properties of molecules7. As a concrete example, Stokes et al.8 trained 
a property prediction model to predict growth inhibitory activity 
against the bacterium Escherichia coli and made predictions on a 
library of ~107 million molecules. They experimentally validated the 
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none of these previous methods have been applied to small-molecule 
antibiotic development.

In this study, we developed SyntheMol, a generative AI model 
that uses a Monte Carlo tree search (MCTS)20,21 to assemble novel com-
pounds using ~132,000 molecular building blocks with known reactivi-
ties and 13 well-validated chemical synthesis reactions (Fig. 1). These 
building blocks allow for the exploration of a chemical space of nearly 
30 billion molecules that are easy to synthesize, with synthesis success 
rates of over 80% within 3–4 weeks22. We trained SyntheMol to design 
molecules with antibiotic activity against A. baumannii, and we synthe-
sized and experimentally validated 58 of our generated molecules. Six 
structurally diverse molecules displayed potent antibacterial activity 
against A. baumannii and several other phylogenetically diverse bacte-
rial pathogens. Furthermore, these structurally novel compounds also 
retained antibacterial activity against clinical isolates harbouring an 
array of functionally diverse resistance determinants. These results 
demonstrate the use of generative AI models to design structurally 
novel, synthetically tractable and efficacious small-molecule antibiotic 
candidates from vast chemical spaces.

Results
Property prediction model development
Our generative approach relies on a molecular property prediction 
model to evaluate the potential of generated molecules to inhibit the 
growth of A. baumannii. Therefore, we began by physically screening 
three distinct chemical libraries to use as a training dataset. Library 1 
and Library 2 are collections of bioactive compounds with 2,371 and 
6,680 molecules, respectively. Library 3 is a synthetic commercially 
available small-molecule screening collection with 5,376 molecules. 
To acquire our training dataset, we grew A. baumannii ATCC 17978 

top predictions and discovered several structurally novel molecules 
with strong antibiotic activity. Similarly, Rahman et al.9 built a property 
prediction model for the antibiotic-resistant bacterium Burkholderia 
cenocepacia and applied it to a library containing ~224,000 molecules. 
Despite these successes, property prediction models have limita-
tions. These molecular property prediction models must evaluate 
molecules one by one from enumerated chemical libraries, which 
prevents them from exploring truly vast chemical spaces in a reason-
able time. Moreover, such models are limited to evaluating compounds 
from curated chemical libraries and are unable to generate truly novel 
chemical matter10.

By contrast, generative AI models design new molecules from 
scratch, rather than evaluating given compounds11. Generative AI 
models can directly generate molecules with desired properties 
without the costly enumeration and evaluation of many compounds. 
Additionally, generative models design molecules from a vast chemi-
cal space, enabling the discovery of novel structural classes of mol-
ecules that might not be found within the in silico chemical libraries 
that can be processed by molecular property prediction models12. 
This is particularly important for antibiotics, where structurally 
and functionally novel molecules are desirable to overcome existing 
resistance determinants13. However, a major limitation of these gen-
erative models is that they often generate synthetically intractable 
compounds14. Without a practical method to chemically synthesize 
these in silico generated molecules, they are unable to be experi-
mentally validated against bacteria. For this reason, there has been 
considerable interest in developing generative AI models that design 
synthesizable molecules. While methods have been proposed with 
promising in silico results15–19, very few studies have synthesized and 
experimentally tested any of the generated molecules11. Moreover, 

Fig. 1 | Generative AI for antibiotic discovery. An overview of our generative AI 
method, SyntheMol, for designing novel antibiotics. First, we curated a training 
set of ~13,000 molecules and performed growth inhibition assays to determine 
their bioactivity against A. baumannii. We subsequently used these chemical 
screening data to train a property prediction model to predict antibacterial 
activity. For molecule generation, we selected a chemical space consisting of 
nearly 30 billion molecules, each of which can be synthesized by applying one 
of 13 chemical reactions to combine two or three molecular building blocks 
from a set of ~132,000 building blocks. SyntheMol explores this chemical space 

for antibiotic candidates by using a MCTS guided by the property predictor. 
SyntheMol iteratively selects building blocks (steps 1 and 2) that are combined 
through a chemical reaction (step 3) to form molecules that are scored by the 
property predictor (step 4). These scores are backpropagated (red dashed 
lines) through the synthetic route to inform future selections by SyntheMol. 
After 20,000 iterations, we filtered the generated molecules to obtain a set of 
structurally novel and diverse high-scoring compounds, which were synthesized 
and experimentally tested against a phylogenetically diverse set of bacterial 
species in vitro.
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in the presence of each chemical at 50 µM, in a volume of 100 µl, in 
biological duplicate. After 16 hours of incubation, we measured the 
endpoint optical density at 600 nm (OD600). Next, for each library 
separately, we computed the mean μ and standard deviation σ OD600 
value across the library and used μ − 2σ as a threshold for binarizing 
the optical density values into active and inactive molecules (Fig. 2a, 

Extended Data Fig. 1a and Supplementary Data 1)23. We then merged 
the three binarized libraries and removed duplicate compounds with 
conflicting activity labels (Methods). This resulted in a combined set 
of 13,524 unique molecules, with 470 active compounds and 13,054 
inactive compounds. After binarization, we performed a t-stochastic 
neighbour embedding (t-SNE) visualization24 of our training dataset 
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Fig. 2 | Property prediction model development. a, Three training datasets 
of diverse small molecules screened against A. baumannii ATCC 17978 for 
growth inhibition. Each plot shows the mean normalized growth across two 
biological replicates for all molecules in the training set. A threshold of the mean 
minus two standard deviations is used to binarize the growth values, with blue 
indicating non-active compounds (above the threshold) and red indicating 
active compounds (below the threshold). The first 650 compounds in Library 
2 were previously tested to validate the property predictor for antibacterial 

activity against A. baumannii70. b, A t-SNE visualization showing 1,005 known 
antibacterial molecules curated from ChEMBL (black), each of the three training 
libraries (green, orange, blue), as well as the active molecules from these training 
libraries (red). c, Visual depictions of the Chemprop, Chemprop-RDKit and 
random forest property prediction models. d, ROC and PRC for each of the three 
property prediction models. Each curve is the average across the ten models in 
the ensemble. AUC is indicated next to each model.
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compounds in the context of 1,005 molecules from ChEMBL25 with 
known antibacterial activity (Fig. 2b and Supplementary Data 2). This 
analysis indicates that our active compounds cover both known and 
new chemical space for antibiotics.

After we acquired our training dataset, we leveraged three differ-
ent property prediction models for predicting antibacterial activity 
against A. baumannii (Fig. 2c): (1) Chemprop, a graph neural network26; 
(2) Chemprop-RDKit, a variant of Chemprop that incorporates a set 
of 200 molecular features computed by the cheminformatics pack-
age RDKit27 and (3) a random forest model28 that uses the 200 RDKit 
features as input to a set of 100 decision trees. We trained each of 
these three property prediction models on our A. baumannii training 
dataset using tenfold cross-validation with splits containing 80% train, 
10% validation and 10% test data. All three model types trained in less 
than 90 minutes on a machine with 16 CPUs (Supplementary Data 3) 
and performed similarly, with receiver operating characteristic-area 
under the curve (ROC-AUC) in the range 0.80–0.84 and precision–recall 
curve-AUC (PRC-AUC) in the range 0.35–0.40 (Fig. 2d and Extended 
Data Fig. 1b–e). During molecule generation, for each property predic-
tion model type, we used the average prediction score of the ensemble 
of ten models (from the ten cross-validation folds) trained on the full 

A. baumannii training dataset as the score function within our genera-
tive model.

Generative model development
Our generative model, SyntheMol, designs molecules within a large 
combinatorial chemical space, which is a chemical space in which every 
molecule can be produced by applying a series of chemical reactions to 
a defined set of molecular building blocks (Fig. 3). The building blocks 
are small molecules that are readily purchasable, and the chemical 
reactions are well-validated reactions that can be applied to a wide 
variety of these building blocks. To ensure rapid and cost-effective 
synthesis, we limited SyntheMol to design molecules that could be 
constructed using a single chemical reaction applied to two or three 
building blocks. SyntheMol can be applied to generate multi-reaction 
molecules if desired, which would expand the chemical space available 
to the model by several orders of magnitude.

The combinatorial chemical space we used here was the Enamine 
REadily AccessibLe (REAL) Space22. The REAL Space consists of 31 billion  
single-reaction molecules that can be produced by applying 169 chemi-
cal reactions to 138,085 molecular building blocks (Extended Data 
Fig. 2a,b). After processing and deduplicating the building blocks 
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Fig. 3 | SyntheMol. SyntheMol generates molecules using a MCTS that explores 
combinatorial chemical space guided by a property prediction model. The 
SyntheMol MCTS algorithm begins at the root node (level 0), which is an 
empty node. This node is expanded by adding one child node for each building 
block molecule in the chemical space (level 1). For each child node, SyntheMol 
computes a score that balances both exploitation of nodes that are known to 
lead to high-scoring molecules as well as exploration of nodes that have rarely 
been visited during the search (Methods). SyntheMol then selects the node on 
level 1 with the highest score (orange arrow) and expands it by creating child 
nodes that contain the selected building block along with one other building 
block (level 2). However, if the two building blocks in a node are not synthetically 
compatible using at least one chemical reaction, the node is removed (grey 
node). As with level 1, the scores of the nodes on level 2 are computed and the 

node with the highest score is selected (orange arrow). If the building blocks 
in the selected node are synthetically compatible in a reaction that requires 
additional reactants, then the process repeats and child nodes are added that 
contain the two building blocks along with a third building block. If, as in this 
case, the building blocks fulfil all the reactants for a reaction, then a child node is 
created with the product of that reaction and the product molecule is evaluated 
by the antibacterial property predictor (level 3). The property prediction value 
is propagated back to all nodes on the path to this molecule (red dashed arrows), 
and each node’s score and visit count are updated before the next rollout 
(red numbers). This entire process represents one rollout of the tree search. 
SyntheMol performs a set number of rollouts, with each rollout updating the 
node scores to guide future rollouts towards regions of chemical space that 
contain high-scoring molecules.
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(Methods), we were left with 132,479 unique building block mole-
cules, with molecular weights ranging from 17 to 503 Da (1–34 heavy 
atoms) and cLogP ranging from −2.98 to 7.89 (Extended Data Fig. 2c,d). 
Although the REAL compounds occupy a different chemical space 
from our training set (Fig. 4a), the building blocks that are assembled 
into these larger molecules show notable overlap with our training 
set, indicating similar molecular features that our property predic-
tion models can recognize and evaluate. For simplicity, we restricted 
SyntheMol to use 13 of the most common REAL reactions (Fig. 4b and 
Extended Data Fig. 2e). Applying these 13 reactions to our collection 
of 132,479 building blocks can produce 29.6 billion molecules, which 
is 93.9% of REAL Space (Supplementary Data 4).

SyntheMol uses a MCTS29 guided by a property prediction model 
to search through a vast combinatorial chemical space for promising 
antibiotic candidates with activity against A. baumannii (Fig. 3). Dur-
ing each MCTS rollout, SyntheMol constructs a molecule by select-
ing building blocks and combining them with chemical reactions. 
The generated molecule is then evaluated by a property prediction 
model, which provides feedback to the MCTS algorithm. Over the 
course of the rollouts, SyntheMol learns which building blocks and 
chemical reactions tend to produce molecules with high property 
prediction scores. This is particularly important given that most build-
ing blocks have low scores (Fig. 4c and Extended Data Fig. 3a,b), and 
yet many molecules constructed from these building blocks have 
high scores that are poorly predicted by their average building block 
score (Fig. 4d and Extended Data Fig. 3c,d) but could be identified by 
MCTS. Notably, there are also many low-scoring molecules that contain 
high-scoring building blocks (Fig. 4d and Extended Data Fig. 3c,d), so 
MCTS could also learn to avoid such building blocks. Furthermore, 
SyntheMol balances exploration and exploitation by computing a score  
(Methods) that values both previously unselected building blocks 
(exploration) as well as building blocks that are known to lead to 
high-scoring molecules (exploitation). We additionally extend the 
standard MCTS score to specifically prioritize molecules that include 
a diverse set of building blocks (Extended Data Fig. 4a–c). After a set 
number of rollouts, SyntheMol outputs all the generated compounds 
along with the specific synthetic scheme—the building blocks and 
chemical reactions in order—required to synthesize each molecule.

Before running SyntheMol for antibiotic discovery, we evaluated 
this method in silico by applying it to a computed molecular property, 
thereby allowing us to evaluate the generated molecules rapidly and 
inexpensively. Specifically, we selected the property cLogP—the com-
puted octanol-water partition coefficient—as determined by RDKit, 
with the goal of generating molecules with cLogP > 6.5. Using a binary 
classification Chemprop predictor for cLogP > 6.5, we ran SyntheMol 
for 20,000 rollouts. Among the 25,550 generated molecules, 61.42% 
were active (RDKit cLogP > 6.5), representing a 1,396 times increase in 
hit rate (Fig. 4e and Supplementary Data 5) compared to 0.044% active 
molecules in a random set of 25,000 REAL Space molecules (Extended 
Data Fig. 2d). Even when using a weaker cLogP Chemprop model trained 
for one epoch instead of 30 to better reflect the antibiotic Chemprop 
model’s performance, 11.78% of the SyntheMol-generated molecules 
were active, representing a 268× increase in hit rate (Fig. 4e and Sup-
plementary Data 5). These results gave us confidence that SyntheMol 
can rapidly search a huge combinatorial space for active molecules 
with a pronounced enrichment in hits.

On the basis of these compelling results, we next applied Syn-
theMol to discover potential antibiotic candidates against A. baumannii 
by using our antibiotic property predictors. We separately performed 
three sets of generations with SyntheMol, one each with our Chemprop, 
Chemprop-RDKit and random forest models. Since the analysis of the 
three generated sets is qualitatively similar, here we present results 
using Chemprop within SyntheMol and present the corresponding 
results for Chemprop-RDKit and random forest in the Extended Data 
figures and tables.

Over the course of 20,000 rollouts (less than 8.5 hours),  
SyntheMol with Chemprop evaluated 452 million intermediate nodes 
containing diverse combinations of molecular building blocks and 
generated 24,335 complete molecules, of which 2,868 had a Chemp-
rop antibacterial prediction score of at least 0.5 (Supplementary Data 
6–8). This outperforms an AI-based virtual screening approach in 
which Chemprop scored 10 million randomly sampled REAL molecules 
(8 hours) and only identified 374 molecules with a score of at least 0.5 
(only 13% as many as SyntheMol).

SyntheMol generated high-scoring molecules throughout all 
rollouts, but these high-scoring molecules were particularly concen-
trated in early rollouts, with 1,035 (36%) of the 2,868 molecules with 
a Chemprop score of at least 0.5 generated in the first 2,000 (10%) of 
the 20,000 rollouts (Fig. 4f and Extended Data Fig. 5a,b). While 20,000 
rollouts only explore a fraction of the nearly 30 billion-molecule chemi-
cal space, these results indicate that SyntheMol generated many of the 
highest scoring compounds rapidly, with diminishing returns from 
additional rollouts. The generated molecules included a diverse set of 
10,846 unique building blocks, with each building block appearing in at 
most 137 different complete molecules (Extended Data Figs. 6a, 7a and 
8a), and they used all 13 reactions with varying frequencies (Extended 
Data Figs. 6b, 7b and 8b).

Among the compounds generated by SyntheMol, we aimed to 
select a diverse set of structurally novel molecules with high property 
prediction scores for downstream validation; we developed a set of 
three filters to facilitate this process. First, to ensure structural novelty 
of the generated molecules, we computed the Tversky30 similarity 
between Morgan fingerprints31 of each generated molecule and all 
of the 470 active molecules from the training dataset (Fig. 4g and 
Extended Data Figs. 7c and 8c), as well the 1,005 antibacterial molecules 
in the ChEMBL database (Fig. 4h and Extended Data Figs. 7d and 8d). 
We then removed any molecules with a Tversky similarity greater than 
0.5 to ensure structural novelty of the remaining generated molecules. 
Second, to obtain molecules that were predicted to have the greatest 
antibiotic activity, we ranked the remaining molecules according to 
their model prediction score and we kept only the top 20% of molecules 
(Fig. 4i and Extended Data Figs. 7e and 8e). Third, to select a structur-
ally diverse set of molecules, we applied k-means clustering32 with 
k = 50 using Tanimoto33,34 distance between the Morgan fingerprints 
of the remaining molecules to obtain 50 clusters of molecules. We then 
selected the highest scoring molecule in each cluster for a total of 50 
molecules (Fig. 4j and Extended Data Figs. 7f and 8f). These 50 selected 
molecules contain a diverse set of 73 different building blocks and use 
eight of the 13 reactions, and 33 (66%) have a Tanimoto similarity to all 
other selected molecules below 0.5.

We applied this filtering procedure to the generated set from 
each of the three property prediction models, resulting in a set of 150 
diverse molecules for experimental validation (Fig. 4k, Extended Data 
Fig. 6c and Supplementary Data 6–8). Since many compounds that can 
theoretically be produced by REAL building blocks and reactions do not 
appear in the REAL Space, probably due to challenges with synthesis, we 
curated a set of 70 of the 150 compounds that were available in the REAL 
Space. Of those, 58 (83%) were successfully synthesized in about 4 weeks 
by Enamine, with 26 molecules from SyntheMol with Chemprop,  
22 molecules from SyntheMol with Chemprop-RDKit and ten molecules 
from SyntheMol with random forest (Supplementary Data 9).

In vitro validation of AI generated molecules
We next set out to validate the bioactivity of the 58 synthesized  
molecules against A. baumannii in the laboratory. We began by per-
forming growth inhibition assays using the synthesized molecules 
against A. baumannii ATCC 17978: the same strain used for training 
set curation. Because A. baumannii is a Gram-negative bacterium with 
challenging permeability characteristics due to its highly impermeable 
outer membrane35, we added low concentrations of the cell envelope 
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Fig. 4 | Generative model development. a, A t-SNE visualization of the Enamine 
REAL Space molecules (black), REAL building blocks (orange), the training set (blue) 
and active molecules within the training set (red). b, The top eight of the 13 REAL 
chemical reactions we applied in SyntheMol, along with the number and percentage 
of REAL molecules produced by each reaction. Note that four reactions (2, 3, 4 
and 5) have common reactants and products, but have different catalysts, and are 
therefore grouped together. c, The distribution of Chemprop antibacterial model 
scores across the REAL building blocks. d, The correlation between the Chemprop 
antibacterial score of a REAL molecule and the average Chemprop score of its 
constituent building blocks. The R2 value is the coefficient of determination. e, The 
distribution of cLogP values for a random sample of REAL molecules (black) and the 
molecules generated using SyntheMol with a Chemprop predictor for cLogP, either 
trained for one epoch (weak model, blue) or for 30 epochs (strong model, red). The 
threshold for binarization of the data is shown in pink (cLogP = 6.5). f, Violin plot of 

the distribution of Chemprop antibacterial model scores for every 2,000 rollouts 
of SyntheMol over 20,000 rollouts (n = 24,335 molecules). The lines in each violin 
indicate the first quartile, the median and the third quartile. g–j, A comparison of 
the properties of the 24,335 molecules generated by SyntheMol with the Chemprop 
antibacterial model and the 50 molecules selected from that set after applying post 
hoc filters. g, The distribution of nearest neighbour Tversky similarities between 
the generated or selected compounds and the active molecules in the training set. 
h, The distribution of nearest neighbour Tversky similarities between the generated 
or selected compounds and the ChEMBL antibacterial molecules. i, The distribution 
of Chemprop antibacterial model scores on the generated or selected compounds, 
as well as on a random set of 25,000 REAL molecules. j, The distribution of nearest 
neighbour Tanimoto similarities among the generated or selected compounds. 
k, A t-SNE visualization of the training set and the sets of molecules generated by 
SyntheMol with each of our three property predictor models.
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permeabilization agents SPR 741 or colistin to enhance intracellular 
accumulation of the synthesized molecules. SPR 741 is a structural ana-
logue of polymyxin B that disrupts the Gram-negative outer membrane 
without perturbing the inner membrane, rendering it less toxic than 
other polymyxins36. It has been investigated in clinical trials37. Colistin is 
a polymyxin antibiotic that is the last-line treatment for drug-resistant 
Gram-negative infections. Despite nephrotoxicity concerns, it is used 
in combination therapies in clinical settings38. Colistin rapidly dis-
rupts both the Gram-negative outer membrane, as well as the inner 
membrane at slightly elevated concentrations. Results from antibiotic 
potency analyses shown in Fig. 5a reveal excellent antibacterial activ-
ity of six molecules (Enamine 10, 23, 28, 31, 40 and 43; Supplementary 
Data 9), as defined by a minimum inhibitory concentration (MIC) ≤ 
8 µg ml−1, when combined with a quarter MIC SPR 741 or a quarter MIC 
colistin (Extended Data Fig. 9a). This represents an exceptional 10% hit 
rate. This is nearly threefold larger than the 3.5% hit rate of the training 
set, which is already enriched for compounds with antibiotic activity.

We next tested our six bioactive molecules against A. baumannii 
ATCC 19606R, a lipopolysaccharide-deficient polymyxin-resistant 
mutant, to genetically validate our observed 741-mediated poten-
tiation38. Lipopolysaccharide is the major component of the outer 
leaflet of the Gram-negative outer membrane that contributes to the 
impermeability of the Gram-negative cell envelope. Consistent with 
our potentiation results with SPR 741, all six compounds showed highly 
potent growth inhibitory activity against A. baumannii ATCC 19606R 
(MICs ≤ 4 µg ml−1; Fig. 5b,c). Moreover, these six molecules displayed 
antibacterial efficacy against methicillin-resistant Staphylococcus 
aureus USA 300 (MICs ranging from 1 to 64 µg ml−1; Fig. 5b,c). For 
reference, S. aureus is a Gram-positive bacterial pathogen that lacks 
an outer membrane. These results emphasize the inherent bioactiv-
ity of these six generated molecules, despite their limitations in outer 
membrane penetration.

To probe the frequencies with which resistance can spontaneously 
evolve against these six molecules in vitro, we quantified their frequen-
cies of resistance (FOR) using A. baumannii ATCC 19606R growing 
on solid media as a model. Briefly, 100 µl of an overnight culture of  
A. baumannii 19606R was spread onto solid media supplemented with 
each generated molecule at concentrations ranging from 0× to 20× MIC. 
Plates were then incubated and monitored for the emergence of resist-
ant colonies over 72 hours. We observed the concentration-dependent 
emergence of colonies, where lower concentrations of compound 
resulted in higher observed FOR (Supplementary Table 1). Indeed, at 
20× MIC, we only observed the emergence of colonies for En-28; no 
other molecules permitted colony growth after 72 hours. For con-
centrations in which resistant colonies emerged during the 72 hour 
incubation period, the calculated FOR ranged from 10−7 (higher con-
centrations) to 10−5 (lower concentrations), which is consistent with 
known antibiotics. For reference, the FOR of rifampicin ranges from 
10−8 to 10−5, with single nucleotide polymorphisms occurring almost 
exclusively in the rpoB gene39–41.

With data suggesting that the FOR of these efficacious generated 
molecules are within typical ranges for downstream development, we 
next ventured to understand the growth inhibitory activity of these 
molecules against multidrug-resistant clinical isolates of A. bauman-
nii and S. aureus. We selected four strains of S. aureus and eight strains 
of A. baumannii from the Centers for Disease Control and Prevention 
Antibiotic Resistance Isolate Bank (ARIsolate Bank), which together 
capture all diverse resistance mechanisms present in each isolate panel 
(Supplementary Tables 2 and 3). The six generated compounds could 
overcome all resistance determinants encoded by these S. aureus and 
A. baumannii isolates (Supplementary Tables 2 and 3), consistent with 
their structural novelty relative to current clinical antibiotics. Together 
with their acceptable intrinsic FOR, these clinical isolate data further 
support potential downstream use of the generated molecules.

We also tested a set of 58 randomly selected molecules from the 
Enamine REAL Space for comparison (Extended Data Fig. 9b). From 
this random set of 58 compounds, none displayed antibacterial activ-
ity against A. baumannii ATCC 17978, alone or when combined with a 
quarter MIC SPR 741, as defined by our threshold of MIC ≤ 8 µg ml−1. In 
combination with a quarter MIC colistin, three compounds displayed 
activity, which is just half of that observed from our generated set. 
Moreover, these random REAL molecules only displayed MICs from 
4 to 8 µg ml−1, while four of the six SyntheMol-generated compounds 
displayed an MIC ≤ 2 µg ml−1 (Supplementary Table 4). This potentiation 
by colistin, but not the less toxic outer membrane-specific compound 
SPR 741, suggests that these three random molecules may have nonspe-
cific activity at the inner membrane, rather than a specific intracellular 
target. Taken together, although our model was not directly trained to 
predict Gram-negative outer membrane permeability, the prediction 
score was reflective of overall likelihood of bioactivity. Indeed, the 
success rate of the SyntheMol-generated molecules is impressive, 
particularly given that we emphasized selecting structurally novel 
compounds during post hoc filtering.

Given that we observed antibacterial activity of these six generated 
molecules against A. baumannii, as well as the phylogenetically distant 
bacterium S. aureus, we assessed whether these compounds would 
display broad-spectrum antibacterial activity against a wide range 
of bacterial pathogens. To this end, we tested these six compounds 
against the Gram-negative species E. coli BW25113, Pseudomonas  
aeruginosa PAO1 and Klebsiella pneumoniae ATCC 43816. The generated 
compounds were tested against E. coli and P. aeruginosa in combination 
with a quarter MIC SPR 741, and against K. pneumoniae in combination 
with a quarter MIC colistin (Fig. 5b,c and Extended Data Fig. 9a). All six 
compounds displayed broad-spectrum antibacterial activity against 
E. coli when tested in combination with a quarter MIC SPR 741, and 
against K. pneumoniae when tested in combination with a quarter MIC 
colistin (Fig. 5b,c). Only Enamine 40 retained its antibacterial activity 
in combination with a quarter MIC SPR 741 against P. aeruginosa. This 
is probably due to the high impermeability commonly displayed by the 
cell envelope of this species. Indeed, representative molecules from 

Fig. 5 | In vitro validation of generated molecules. a, Heat map summarizing 
the MIC of the 58 synthesized molecules generated by SyntheMol against  
A. baumannii ATCC 17978 in (i) LB medium, (ii) LB medium + a quarter MIC SPR 
741 and (iii) LB medium + a quarter MIC colistin. Compounds were tested at 
concentrations from 256 to 4 µg ml−1 in twofold serial dilutions. Lighter colours 
indicate lower MIC values for each generated molecule. Bold numbers indicate 
generated molecules with high activity (MIC ≤ 8 µg ml−1) in conditions ii and iii. 
Experiments were performed in at least biological duplicate. b, Six molecules 
that showed high activity from a were tested against a panel of ESKAPE species, 
with and without an outer membrane disrupting agent (SPR 741 or colistin) at a 
quarter MIC. No potentiator was used for the lipopolysaccharide-deficient strain 
A. baumannii ATCC 19606R (mutation in lpxA) or the Gram-positive species  
S. aureus. Note that in trans expression of lpxA restores the native outer membrane 
of A. baumannii ATCC 19606R. Lighter colours indicate lower MIC values for each 

molecule. Experiments were performed in at least biological duplicate.  
c, Growth inhibition of lipopolysaccharide-deficient A. baumannii ATCC 
19606R and S. aureus USA 300 by each of the six molecules in dose. Structures 
of compounds are shown. Experiments were performed using twofold serial 
dilution series. Experiments were performed in biological duplicate. Error bars 
represent absolute range of optical density measurements at 600 nm.  
d, Chequerboard analysis of the six compounds to quantify synergy, as defined 
by FICI, with SPR 741 or colistin against a panel of Gram-negative species. 
Chequerboard experiments were performed using twofold serial dilution series, 
with the maximum and minimum concentrations of the potentiator (x axis) and 
generated compound (y axis) shown in µg ml−1. Darker blue represents higher 
bacterial growth. Experiments were performed in at least biological duplicate. 
The mean growth of each well is shown.
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many clinical antibiotic classes also failed to show potent antibacterial 
activity against P. aeruginosa PAO1 (Supplementary Table 5).

With data showing that our generated molecules displayed anti-
bacterial efficacy against the diverse Gram-negative species A. bau-
mannii, E. coli, P. aeruginosa and K. pneumoniae when combined with 
a quarter MIC SPR 741 or colistin, we ventured to quantify these chemi-
cal–chemical synergies. To this end, we performed dose-response 
chequerboard experiments to determine the fractional inhibitory 
concentration indices (FICI) (Supplementary Table 6) of all six gener-
ated molecules in combination with SPR 741 (A. baumannii ATCC 17978,  
E. coli and P. aeruginosa) or colistin (A. baumannii ATCC 17978 and 
K. pneumoniae) (Fig. 5d and Extended Data Fig. 9c,d). As expected, 
we observed synergy (FICI < 0.5) with all six compounds against  
A. baumannii ATCC 17978 (Fig. 5d and Extended Data Fig. 9c), E. coli 
(Fig. 5d) and K. pneumoniae (Fig. 5d). Dose-dependent synergy was only 
observed with Enamine 40 against P. aeruginosa (Fig. 5d), consistent 
with previous observations (Fig. 5b). Together, these in vitro experi-
ments highlight the ability of SyntheMol to generate novel antibacterial 
molecules with potent laboratory-validated activity.

According to a Chemprop-RDKit molecular property prediction 
model trained on the ClinTox dataset42, all six bioactive molecules are 
predicted to have a probability of human toxicity that is within the dis-
tribution of predictions for known non-toxic molecules in the ClinTox 
dataset, indicating a relatively low likelihood of toxicity (Extended 
Data Fig. 10). En-10 and En-23 did not induce any toxic phenotypes 
in mice—hunched posture, reduced exploratory behaviour, whole 
body piloerection and intermittent abdominal contractions—after an 
intraperitoneal injection of 50 mg kg−1, which is an exceptional dose, 
in agreement with model predictions. Only En-10 and En-23 could 
be tested for toxicity in mouse models due to insufficient aqueous 
solubility of the other four generated antibacterial molecules. Indeed, 
SyntheMol was not trained to generate molecules with high aque-
ous solubility. Nevertheless, the favourable in vivo toxicity profiles 
of En-10 and En-23 may suggest that the additional four molecules, 
which received similarly low toxicity prediction scores, would also 
be non-toxic in mice. Therefore, we posit that these novel generated 
molecules represent exciting candidates for further antibiotic develop-
ment in the context of translational investigations.

Discussion
We developed SyntheMol, a novel generative AI model for 
small-molecule drug design that uses molecular property prediction 
models in conjunction with MCTS to explore a vast combinatorial 
chemical space for promising antibiotic candidates. We applied this 
method to design antibacterial compounds against A. baumannii, for 
which new antibiotics are urgently needed. Among the compounds 
generated by SyntheMol, we synthesized and experimentally tested 58 
structurally novel and diverse compounds. We discovered six structur-
ally novel molecules, a 10% hit rate, with activity against A. baumannii, 
as well as other phylogenetically diverse ESKAPE species2,3.

SyntheMol successfully designed molecules that are both syntheti-
cally tractable and effective against A. baumannii based on empirical wet 
laboratory validation, advancing beyond previous work applying gen-
erative methods for drug discovery tasks. Some studies have developed 
generative models for the design of antimicrobial peptides43,44, which 
are potentially more straightforward to design and synthesize than 
small molecules, which can have complex synthetic routes. However, 
antimicrobial peptides can suffer from poor stability, low oral bioavail-
ability and a short in vivo half-life due to proteolytic degradation, so small 
molecules may be preferred as systemically bioavailable medicines45,46.

Generative models for small-molecule design can take a variety 
of forms10–12. A common method is the variational autoencoder, which 
learns to reproduce molecules from a given chemical space and can be 
conditioned to optimize for molecules with a desired property47–53. 
However, the molecules generated by these methods are often difficult 

to synthesize, limiting their practical use14. Therefore, recent methods 
have focused on improving synthesis tractability, either by gener-
ating molecules with high predicted synthesizability scores, which 
encourages but does not guarantee synthesizability54, or by explicitly 
enforcing synthesizability in the generative model architecture15–19. 
SyntheMol belongs to the latter category; it treats the generative pro-
cess as a search for effective molecules within a combinatorial chemical 
space composed of defined molecular building blocks and chemical 
reactions, which explicitly provides a scheme to synthesize every 
generated molecule.

Previous implementations of similar synthesis-aware approaches 
have either used a greedy search guided by molecular docking55 that 
does not take advantage of the power of AI for property prediction and 
intelligent search, or they have used autoencoders15,16,19, reinforcement 
learning16,17 or genetic algorithms18 that can be slow or challenging to 
optimize. By contrast, SyntheMol uses MCTS, which is fast and flexible, 
enabling its use with any combinatorial chemical space and property 
prediction model. MCTS has been used in previous studies for gener-
ating molecules56,57, identifying functional groups58 and planning ret-
rosynthetic routes59,60, but SyntheMol uses MCTS in combination with 
a property predictor to generate novel molecules from a multi-billion 
compound chemical space.

Crucially, we also introduce several post hoc filtering procedures 
that ensure the structural novelty, diversity and predicted antibacterial 
efficacy of the generated molecules. Structural novelty is particularly 
important to avoid generating analogues of known antibiotics, against 
which resistance is likely to rapidly emerge13, and to ensure that the 
generative model does not simply replicate known active molecules 
or functional groups from the training set61. Notably, unlike most pre-
vious studies, which only perform in silico evaluations of generated 
molecules using imperfect predictors of synthesizability and efficacy11, 
we chemically synthesized and experimentally tested 58 generated 
molecules, of which six were efficacious in the laboratory, representing 
an exceptional in vitro hit rate. Our entire pipeline—including training 
set curation, model training, molecule generation, chemical synthesis 
and experimental validation—could be performed in about 3 months 
(Fig. 1), demonstrating that generative AI is a powerful tool for rapidly 
exploring vast chemical spaces for new drug candidates that are easy 
to acquire in the laboratory.

The six highly potent molecules generated by SyntheMol 
may have potential clinical use on the basis of our in vitro experi-
ments and in silico analysis of human toxicity. As single agents, 
these molecules display growth inhibitory activity against the 
Gram-positive bacterium methicillin-resistant S. aureus, as well as 
the lipopolysaccharide-deficient and colistin-resistant Gram-negative 
isolate A. baumannii ATCC 19606R. When administered in combina-
tion with an outer membrane perturbing agent, SPR 741 or colistin, 
all six molecules exhibit broad-spectrum activity across the diverse 
Gram-negative species A. baumannii, E. coli and K. pneumoniae, and 
one molecule, Enamine 40, also shows activity against P. aeruginosa. 
Due to these observed synergies in vitro, it may be possible to combine 
these generated compounds with potentiators at low dose in vivo, 
thereby reducing potential toxicities while maintaining antibacte-
rial activity in dose-sparing combination therapies. In particular, the 
in vivo toxicity data presented here for En-10 and En-23 indicate that 
these compounds have minimal toxicity and are therefore promising 
as potentially safe and effective antibiotic candidates. Further discus-
sion of future directions for these compounds and for SyntheMol is in 
the ʻExtended Discussionʼ in the Supplementary Information.

While additional research is warranted to develop these gener-
ated molecules into reasonable antibiotic candidates, and to further 
improve generative AI methods for synthesizable molecule design, this 
work represents an important step towards the practical application of 
generative AI approaches for antibiotic discovery and drug discovery 
more broadly.
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Methods
Training set
The training set consists of three libraries of compounds. Library 1 
consists of 2,371 molecules from the Pharmakon-1760 library (1,360 
Food and Drug Administration (FDA)-approved drugs and 400 inter-
nationally approved drugs) and from a set of 800 natural products 
isolated from plant, animal and microbial sources. Library 2 is the 
Broad Drug Repurposing Hub with 6,680 molecules, many of which 
are FDA-approved drugs or clinical trial candidates62. Library 3 is a syn-
thetic small-molecule screening collection with 5,376 molecules, which 
were randomly sampled from a larger chemical library at the Broad 
Institute. All three libraries were screened in two biological replicates 
against A. baumannii ATCC 17978 for growth inhibitory activity. Cells 
were grown overnight at 37 °C in 2 ml of Luria-Bertani (LB) medium 
and then diluted 1:10,000 in fresh LB. Next, 49.5 µl (or 99 µl) of cells 
were added to every well of Corning 384-well (or 96-well) flat-bottom 
plates either manually or using an Agilent Bravo liquid handling system. 
Each compound was then added to a final screening concentration of 
50 µM in a final volume of 50 µl (or 100 µl). Plates were then incubated 
at 37 °C without shaking for 16 h. Plates were then read at 600 nm using 
a SpectraMax M3 plate reader (Molecular Devices) and data were nor-
malized by plate using interquartile mean before data compiling and 
hit identification (below).

Training set processing
For each library separately, we computed the average normalized 
OD600 for each compound from the two biological replicates. Next, 
we computed the mean μ and standard deviation σ of these average 
normalized OD600 values across the compounds of the library. We 
used the threshold μ − 2σ to binarize these values, with all values below 
the threshold labelled active and all values at or above this threshold 
labelled inactive. Next, we canonicalized the SMILES63 for each dataset 
using RDKit27 v.2022.03.4 and then combined the three libraries into 
a single dataset with 14,427 data points. In this combined dataset, for 
any data points with matching SMILES and binary activity labels, we 
kept one data point and removed the others, resulting in 13,594 data 
points. For any data points with matching SMILES and conflicting 
binary activity values (at least one with an active label and at least one 
with an inactive label with the same SMILES), we removed all samples 
to avoid noisy activity labels. This resulted in a final dataset of 13,524 
unique molecules. Among these molecules, 470 (3.5%) are active and 
13,054 (96.5%) are inactive.

ChEMBL antibiotics
To obtain a set of known antibiotics for comparison, we queried the 
ChEMBL database25 using the search terms ‘antibiotic’ and ‘antibacte-
rial’ on 8 August 2022. The term ‘antibiotic’ returned 636 molecules 
(https://www.ebi.ac.uk/chembl/g/#search_results/compounds/ 
query=antibiotic), of which 587 had SMILES. The term ‘antibacterial’ 
returned 604 molecules (https://www.ebi.ac.uk/chembl/g/#search_ 
results/compounds/query=antibacterial), of which 589 had 
SMILES. We merged the two sets of compounds, removed mol-
ecules with missing SMILES, converted the SMILES to canonical 
SMILES using RDKit and then deduplicated the compounds on the 
basis of canonical SMILES. This resulted in a set of 1,005 unique  
molecules.

t-SNE visualizations
t-SNE visualizations24 were created using scikit-learn’s t-SNE applied to 
the Morgan31 fingerprints of molecules with Jaccard (Tanimoto) as the 
distance metric, squared distances and a principal components analysis 
initialization. Morgan fingerprints were computed with radius 2 and 
2,048 bits using RDKit’s GetMorganFingerprintAsBitVect function. 
For large datasets, molecules were randomly sampled to represent the 
dataset in the t-SNE visualization.

Property predictor architectures
Chemprop. Chemprop is a molecular property prediction model that 
uses a directed message passing neural network to process molecules 
and make predictions about their molecular properties26. Chemprop 
extracts simple atom and bond features from the molecular graph, 
such as the type of each atom and the type of each bond, to create a 
feature vector for each atom and bond. Chemprop then applies three 
message passing steps, which use a neural network layer to iteratively 
merge information from neighbouring atoms and bonds. After the 
message passing steps, Chemprop sums all the merged feature vectors 
to create a single feature vector that represents the whole molecule. 
This feature vector is passed through a feed-forward neural network 
with two layers to predict the molecular property, which in this case is 
the probability of A. baumannii growth inhibition. We used Chemprop 
v.1.5.2 with PyTorch v.1.12.0.post2 (ref. 64).

Chemprop-RDKit. The Chemprop-RDKit model is a variant of the 
Chemprop model described above. This model applies the same mes-
sage passing procedure to obtain a single feature vector represent-
ing the molecule, but before applying the two feed-forward neural 
network layers, the molecular feature vector from message passing 
is concatenated with 200 molecular features computed by RDKit. We 
refer to these features as ‘RDKit features’. The concatenated vector 
is then used as input to the feed-forward neural network to make the 
property prediction.

Random forest. A random forest model uses a set of decision trees 
with rules based on the input features to make predictions28. Our 
random forest model takes the molecular graph and computes the 
same 200 RDKit features as in the Chemprop-RDKit model. These 
200 RDKit features are fed as input to a random forest classifier model 
with 100 decision trees, each of which makes a binary classification 
prediction. The prediction of the random forest is the average of the 
predictions of the decision trees. We used the RandomForestClassifier 
from scikit-learn v.1.1.1 with all default settings besides n_jobs=−1 and 
random_state=0 (ref. 65).

Model training
All three models were trained using the same data splits. The data was 
randomly split into 80% train, 10% validation and 10% test for each of 
ten cross-validation folds. The two Chemprop models used the valida-
tion data for early stopping, while the random forest model did not use 
the validation data. The Chemprop models were trained for 30 epochs 
using the Adam optimizer with a binary cross-entropy loss. The models 
were evaluated on the test data using both ROC-AUC and PRC-AUC. 
When using each model type to guide SyntheMol, we computed the 
average score of the ensemble of ten models (one model from each of 
the ten folds) as the model score.

To estimate the ability of the models to generalize to structurally 
novel molecules, we evaluated the ability of our model to transfer 
across our three chemical libraries. Specifically, we used the same 
procedure as above to train a set of ten models of each of the three 
model types on each of the three chemical libraries separately. For a 
given library, we measured the mean ROC-AUC and PRC-AUC values 
on the 10% test data from each of the ten cross-validations. Then, to 
measure generalization, we used the ensemble of ten models trained 
on one library to make predictions on the other two libraries, and we 
evaluated the ROC-AUC and PRC-AUC across those whole libraries.

Enamine REAL Space
The Enamine REAL Space consists of 31 billion make-on-demand 
molecules that can be synthesized using in-house validated one-pot 
synthetic procedures, which are applied to an in-house qualified set 
of chemical building blocks as reactants22. The synthesis time is typi-
cally 3–4 weeks with an average success rate of over 80%. We used the 
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November 2021 version of the REAL reactions consisting of 169 chemi-
cal reactions and the 2021 q3-4 version of the REAL building blocks con-
sisting of 138,085 building block molecules. We downloaded the 2022 
q1-2 version of the REAL Space consisting of 31,507,987,117 molecules 
that can be produced using the building blocks and chemical reactions.

To prepare the building blocks for use in our model, we first used 
RDKit to convert the building blocks SDF file to SMILES. All the build-
ing blocks were successfully converted. Then, we deduplicated the 
molecules by SMILES, which left 134,609 unique molecules due to 
a lack of stereochemistry in the converted SMILES. We applied the 
RDKit salt remover to remove salts from the building blocks to pre-
vent incorrect reaction template matching during generation, and we 
deleted 25 molecules whose salts could not be correctly removed. This 
left us with 132,479 unique molecules as our building block set (with 
138,060 unique building block IDs due to duplicate SMILES without 
stereochemistry and salts).

We chose 13 of the most common REAL Space that account for 
96.6% of REAL Space. Applying these 13 reactions to our collection of 
132,479 processed building blocks can produce 29,575,293,692 billion 
molecules, which is 93.9% of REAL Space. For each of these reactions, 
we manually converted the visual reaction template in the reactions 
PDF from Enamine to an atom-mapped SMARTS66 reaction template. If 
a given set of building blocks matches the SMARTS reaction template, 
then it is likely, but not guaranteed, that those building blocks can suc-
cessfully participate in that chemical reaction.

To improve the chance that a set of building blocks that matches 
a SMARTS template can successfully participate in a given chemical 
reaction to form a REAL Space molecule, we iterated through the REAL 
Space to collect a set of building block molecules that appear as each 
reactant in each reaction. For example, we collect a set of all the building 
blocks that appear at least once as the first reactant in REAL reaction 1. 
Then, to determine whether certain building blocks can participate in a 
reaction, we check both whether the building blocks match the SMARTS 
template and whether the building blocks appear in the set of building 
blocks that are used at least once as that reactant. If both conditions 
hold, then it is very likely that the building blocks do participate in the 
chemical reaction and create a product molecule in the REAL Space.

SyntheMol
SyntheMol is a generative model that explores combinatorial chemical 
spaces, which are composed of molecules formed by molecular build-
ing blocks and chemical reactions, to find molecules with a desired 
property. SyntheMol uses a MCTS algorithm similar to that used by 
AlphaGo29 to efficiently search this chemical space for desirable mole-
cules. SyntheMol not only quickly identifies promising molecules, but it 
also specifies the synthetic route (that is, a series of one or more chemi-
cal reactions combining molecular building blocks) to construct that 
molecule. Below, we summarize the mathematical notations used to 
describe the SyntheMol MCTS algorithm and we provide pseudocode.

SyntheMol MCTS algorithm
require synthesis tree T, property prediction model 
M, maximum number of rollouts n_rollout, maximum 
number of reactions n_reaction 
function MCTS(): 
    for i = 1 to n_rollout do: 
      rollout(T.root) 
    end for 
    return all visited nodes in T with 1 molecule 
and ≥ 1 reaction 
function rollout(N): 
    if node N has undergone ≥ n_reaction reactions 
then 
      return property prediction score of M applied 
to molecules in N 
    end if 
    E ← expand_node(N) 
    S ← select child node in E with largest MCTS 
score 
    return rollout(S) 
function expand_node(N): 
    E ← empty set of nodes 
    foreach reaction R do 
      if R is compatible with molecules in N then 
        Add new node to E with each product of R 

Name Notation Type Description

Chemical space C Set of molecules The set of all molecules.

Building blocks B B ⊂ C A set of building block molecules, which are molecules that are small and easy to purchase.

Chemical reactions R Set of chemical 
reactions

A set of chemical reactions that combine two or more molecules in C into a single molecule in C 
(ignoring byproducts and catalysts).

Property predictor M M ∶ C→ ℝ A function, such as a neural network, that predicts a property of a molecule.

Synthesis tree T Set of nodes A synthesis tree that represents every possible synthetic route that creates a molecule using molecular 
building blocks from B and chemical reactions from R.

Node N N ∈ T A node in the synthesis tree.

Node molecules Nmols Nmols ⊂ C The molecules represented by node N, which are either building block molecules from B or molecules 
produced by combining building blocks from B with chemical reactions from R.

Node children Nchildren Nchildren ⊂ T The child nodes of node N, which consist of all nodes that contain Nmols along with one more building 
block molecule from B or contain the product of applying a reaction r ∈ R to Nmols.

Node siblings Nsiblings Nsiblings ⊂ T The sibling nodes of node N, which are all nodes created at the same time as N by the parent node of N.

Node visits Nvisit Nvisit ∈ ℕ The number of times node N has been visited (that is, selected during a rollout).

Node value Nvalue Nvalue ∈ ℝ The value of the node, which is the sum of the property prediction scores of all final molecules 
produced by a synthetic route that passes through node N.

Node diversity Ndiversity Ndiversity ∈ ℕ The building block diversity of the node, which is the maximum number of times that any of the 
building blocks used in any of the molecules in Nmols has been used in non-building block molecules 
generated so far.

No. of rollouts nrollout nrollout ∈ ℕ The number of rollouts to run the SyntheMol MCTS algorithm.

No. of reactions nreaction nreaction ∈ ℕ The maximum number of reactions allowed during a rollout.
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applied to molecules in N 
      end if 
    end for 
    foreach building block B do 
      if any reaction is compatible with B and 
molecules in N then 
        Add new node to E with B and molecules in N 
      end if 
  end for 
  return E

Let C be the set of all molecules. We assume that we have a set of 
molecular building blocks B ⊂ C , which are molecules that are small 
and easy to purchase from commercial vendors. We also have a set of 
chemical reactions R where each chemical reaction r ∈ R combines two 
or more molecules into a single molecule (ignoring byproducts and 
catalysts). We then build a property predictor M ∶ C→ ℝ, which is a 
function, such as a neural network, that predicts a property of a mol-
ecule. In our case, B is a set of 132,479 REAL molecular building blocks, 
R is a set of 13 REAL chemical reactions and M is a Chemprop, 
Chemprop-RDKit or random forest model that is trained to predict A. 
baumannii growth inhibition, with prediction values in the range [0,1].

We define a synthesis tree T that represents every possible syn-
thetic route that creates a molecule using molecular building blocks 
from B and chemical reactions from R. The tree consists of a set of nodes 
N ∈ T, each of which represents a discrete step in the synthetic route. 
Specifically, each node N contains a set of one or more molecules 
Nmols ⊂ C , which are either building blocks from B or molecules that 
can be produced from building blocks in B and reactions in R. All mol-
ecules Nmols in a given node N must be able to participate together in at 
least one reaction in R (although additional reactants may be needed).

Additionally, each node in the tree has a set of child nodes, 
Nchildren ⊂ T , which can come from two sources. First, for each reaction 
r ∈ R where the node’s molecules Nmols match all the reactants in r, we 
apply r to Nmols and add a child node to Nchildren for each unique product 
molecule of the reaction. Note that there may be multiple ways to run 
a reaction for a given set of reactant molecules resulting in multiple 
possible products and, thus, multiple child nodes. The second source 
of child nodes comes from creating nodes that contain all of the mol-
ecules in Nmols along with one molecular building block from B that is 
compatible with all of the molecules in Nmols in at least one reaction in 
R. Note that for the root node, which has no molecules, the child set is 
all nodes that have exactly one molecular building block in B.

To generate molecules, SyntheMol uses a MCTS algorithm that 
searches through the chemical tree T to find nodes N that contain 
molecules that are predicted to have high molecular property scores 
according to the property predictor M. Specifically, SyntheMol runs 
nrollout rollouts through the chemical tree T, where each rollout begins at 
the root node, which is an empty node, and proceeds to search through 
the tree as outlined below.

At each node, SyntheMol selects a child node by scoring all of the 
child nodes of the current node using a scoring function S(N) (defined 
below), and it then selects the node with the highest score. This scoring 
and selection is then repeated for this child node, and the process 
continues until a node is found that contains a single molecule m ∈ C  
produced with nreaction chemical reactions. Every node N that is selected 
(‘visited’) during this rollout increments its visit count Nvisit by one and 
increments its value Nvalue by M(m), which is the model score of the final 
molecule of the rollout.

The node score is S (N) = Q(N )+P(N )U(N )
D(N)

, which balances exploitation 

with Q(N), molecular property prediction with P(N), exploration with 
U(N) and building block diversity with D(N). The exploitation factor is 

Q (N ) = Nvalue

Nvisit
 where Nvalue is the sum of property prediction scores of all 

final molecules discovered on rollouts that visit node N, and Nvisit is the 

number of times node N has been visited. This factor encourages Syn-
theMol to follow routes through the chemical tree T that lead to 
high-scoring final molecules. The property prediction factor is 
P (N ) = 1

|Nmols |
∑|Nmols |
i=1 M (Nimols)  where M is the property prediction  

model and Nimols is the ith molecule in node N. This factor represents 

the average property prediction score of the molecules in the node and 
encourages selection of nodes with high-scoring molecules that could 
potentially form a single high-scoring molecule when combined by a 

chemical reaction. The exploration factor is U (N ) = c√
1+Nvisit+∑N′∈Nsiblings

N′visit
1+Nvisit

  

where c = 10 is a hyperparameter controlling the exploration–exploita-
tion tradeoff, Nsiblings is the set of sibling nodes of N (that is, all nodes 
created at the same time as N by the same parent node) and Nvisit is the 
visit count of the node. This factor encourages SyntheMol to select 
child nodes that have not been visited frequently compared to their 

sibling nodes. The building block diversity factor is D (N ) = e
Ndiversity−1

100  
where Ndiversity is the maximum number of times that any of the building 
blocks used in any of the molecules in Nmols has been used in molecules 
across all of the nodes searched so far. This factor penalizes SyntheMol 
for selecting nodes with molecules containing building blocks that 
have already been used many times in previously visited nodes.

After nrollout rollouts (we use nrollout = 20,000), SyntheMol stops and 
returns a list of all the nodes it encountered during the search. This list 
is then filtered to only keep nodes that contain a single molecule that 
was produced using at least one chemical reaction (that is, excluding 
the building blocks themselves). To ensure rapid, inexpensive and  
easy synthesis, we use nreaction = 1 to generate single-reaction mole-
cules, which is equivalent to searching the REAL Space since it only  
contains single-reaction molecules. However, SyntheMol can be 
directly applied to generate molecules that require multiple chemi-
cal reactions. Even allowing just 2–3 chemical reactions per molecule 
would result in a chemical space of 1020 to 1030 molecules, illustrat-
ing the potential of SyntheMol to explore truly huge combinatorial  
chemical spaces.

Generating molecules with SyntheMol
To evaluate SyntheMol in silico before applying it to antibiotic discov-
ery, we selected the property cLogP, the computed octanol-water parti-
tion coefficient, which can be computed for any generated molecule. 
We computed cLogP values for the 13,524 molecules in our antibiotic 
training set with RDKit’s MolLogP function, which uses the Wildman–
Crippen atom-based scheme67. We then binarized cLogP values by 
labelling molecules with cLogP > 6.5 as ‘active’ and molecules with 
cLogP ≤ 6.5 as ‘inactive’. We selected this threshold because it resulted 
in 495 (3.7%) active molecules in the training set, which is comparable 
to the 470 (3.5%) antibiotic hits. We trained two Chemprop models 
on the binary cLogP data: one model with the standard 30 epochs of 
training (ROC-AUC = 0.97, PRC-AUC = 0.74) and one model with only 
one epoch of training to better match the performance of the antibiotic 
property prediction models (ROC-AUC = 0.86, PRC-AUC = 0.20). Both 
models were evaluated using tenfold cross-validation. Note that we did 
not train a Chemprop-RDKit or random forest model on cLogP since 
both models are given the cLogP value as part of the 200 RDKit input 
features. We then applied SyntheMol with the two Chemprop models 
trained to predict cLogP for 20,000 rollouts each (~9 hours). We next 
applied SyntheMol to discover potential antibiotic candidates against 
A. baumannii by using each of the three antibiotic property prediction 
models for 20,000 rollouts each.

Filtering generated molecules
We filtered the SyntheMol-generated compounds to achieve three 
goals: (1) low structural similarity to known antibiotics and antibiotic 
functional groups to ensure discovery of novel chemical structures; 
(2) high model score to maximize the probability of antibiotic activity 
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and (3) high diversity within the set of selected molecules to enable the 
discovery of a variety of structurally novel molecules.

First, to obtain structural novelty, we compare the generated 
molecules to two sets of molecules with known antibiotic effect: (1) 
the 470 active molecules in our training set, and (2) the 1,005 anti-
biotic or antibacterial molecules from ChEMBL. For each of these 
two reference sets, we compute the Tversky30 similarity between 
the Morgan fingerprints of molecules in the SyntheMol-generated 
set and molecules in the reference set. If we let X be the Morgan fin-
gerprint of a generated molecule and Y be the Morgan fingerprint of 
a reference molecule, then the Tversky similarity between the two 
molecules is defined as

Tα,β (X,Y) =
|X ∩ Y|

|X ∩ Y| + α |X ⧵ Y| + β |Y ⧵ X|

for some α,β ≥ 0. We use α = 0 and β = 1, which simplifies to

T0,1 (X,Y ) =
|X ∩ Y |
|Y | .

Thus, T0,1 (X,Y) is asymmetric and measures the proportion of the 
chemical substructures in Y (the reference molecule) that also appear 
in X (the generated molecule). This contrasts with the typically used 
Tanimoto33,34 similarity, also known as the Jaccard index, which is 
defined as

J (X,Y ) = T1,1 (X,Y ) =
|X ∩ Y |
|X ∪ Y |

and is a symmetric measure of the ratio of shared substructures to 
total substructures in the two molecules. The T0,1 Tversky similarity 
is preferred over the Tanimoto similarity in our application because 
it assigns high similarity to generated molecules that contain most or 
all of the substructures of a reference molecule, even if the generated 
molecule also contains many other substructures and would thus 
have a low Tanimoto similarity. Therefore, high Tversky similarity 
allows us to identify and filter out generated molecules that simply 
repeat antibiotic functional groups from the reference set, potentially 
with additional irrelevant atoms and bonds, rather than contain novel 
functional groups.

For each generated molecule, we compute the Tversky similarity 
between that molecule and every molecule in the reference set, and we 
determine the most similar reference molecule. If the Tversky similarity 
between the generated molecule and the most similar reference mol-
ecule is less than or equal to 0.5, then the generated molecule is kept, 
otherwise the molecule is removed since it is not structurally novel. We 
apply this filtering to the generated molecules using both the active 
molecules from the training set and the antibiotic and antibacterial 
molecules from ChEMBL.

After filtering by Tversky similarity to the two reference sets, 
we filter by model prediction score to ensure that we are selecting 
high-scoring molecules that are likely to have antibiotic activity. We 
rank the remaining generated molecules according to their prediction 
score and keep the top 20% of molecules.

To ensure structural diversity among the structurally novel, 
high-scoring compounds, we apply clustering to the remaining mol-
ecules. Specifically, we apply k-means clustering32 with k = 50 (with 
KMeans from scikit-learn) using Morgan fingerprints as the molecular 
features and Tanimoto similarity as the distance metric. Here, we use 
Tanimoto similarity instead of Tversky similarity since we are interested 
in a symmetric similarity comparison between molecules within the 
generated set. After obtaining the 50 clusters, we select the molecule 
with the highest score in each cluster, giving us 50 molecules. Per-
forming this filtering process for each of the three sets of generated 
molecules, one for each property prediction model, gave us a set of 
150 molecules generated by SyntheMol.

Compound synthesis
Although all the generated molecules were designed using REAL build-
ing blocks and chemical reactions, many molecules that could theo-
retically be produced by these building blocks and chemical reactions 
do not appear as part of the REAL Space, probably due to additional 
chemical filtering rules to remove molecules that might be difficult to 
synthesize. For this reason, several of our generated molecules were not 
part of REAL Space and were not available. Among our 150 compounds, 
we ordered 70 from Enamine that were available for synthesis, with 
28 compounds from SyntheMol with Chemprop, 25 compounds from 
SyntheMol with Chemprop-RDKit and 17 compounds from SyntheMol 
with random forest. Among these molecules, 58 molecules (83%) were 
successfully synthesized with purity greater than 90% in about 4 weeks, 
with 26 compounds from SyntheMol with Chemprop, 22 compounds 
from SyntheMol with Chemprop-RDKit and ten compounds from Syn-
theMol with random forest. Purity was verified using liquid chromatog-
raphy–mass spectrometry (LC–MS) except in cases of poor solubility, 
compound instability under LC–MS conditions, or non-informative 
LC–MS. In these cases, proton nuclear magnetic resonance (1H-NMR) 
was used to assess chemical purity.

Antibacterial potency analyses
A. baumannii ATCC 17978, A. baumannii clinical isolates (ARIsolate Bank), 
E. coli BW25113, P. aeruginosa PAO1, K. pneumoniae ATCC 43816, S. aureus 
USA 300 and S. aureus clinical isolates (ARIsolate Bank) were grown 
overnight at 37 °C in 3 ml of LB medium. A. baumannii ATCC 19606R 
and A. baumannii ATCC 19606R + lpxA were grown overnight at 37 °C in 
3 ml of LB medium supplemented with 10 µg ml−1 colistin or 200 µg ml−1 
ampicillin, respectively. Overnight cultures were then diluted 1:10,000 
into fresh LB (A. baumannii ATCC 17978, A. baumannii clinical isolates, 
A. baumannii ATCC 19606R (with 10 µg ml−1 colistin), A. baumannii ATCC 
19606R + lpxA (with 200 µg ml−1 ampicillin), E. coli BW25113, P. aeruginosa 
PAO1, K. pneumoniae ATCC 43816, S. aureus USA 300 and S. aureus clini-
cal isolates), LB with a quarter MIC SPR 741 (A. baumannii ATCC 17978, A. 
baumannii clinical isolates, E. coli BW25113 and P. aeruginosa PAO1) or LB 
with a quarter MIC colistin (A. baumannii ATCC 17978, A. baumannii clini-
cal isolates and K. pneumoniae ATCC 43816). Cells were then introduced 
to twofold serial dilutions of each generated or control compound, in a 
final volume of 100 µl, in Costar 96-well flat-bottom plates. Plates were 
incubated at 37 °C without shaking (A. baumannii ATCC 17978, A. bau-
mannii ATCC 19606R, A. baumannii ATCC 19606R + lpxA, A. baumannii 
clinical isolates, E. coli BW25113, P. aeruginosa PAO1 and K. pneumoniae 
ATCC 43816) or with shaking at 900 rpm (S. aureus USA 300 and S. aureus 
clinical isolates) until untreated control cultures reached stationary 
phase. Plates were then read at 600 nm using a BioTek Neo2 plate reader.

FOR analyses
A. baumannii ATCC 19606R was grown overnight at 37 °C in 3 ml of 
LB medium. For FOR quantification, 6.6 × 106 CFU in 100 µl of volume 
was deposited onto solid LB plates supplemented with each Enamine 
compound at the noted concentrations. After 24, 48 and 72 h of incuba-
tion at 37 °C, colonies were counted and these values were divided by 
6.6 × 106 CFU to quantify the FOR in each condition.

Chequerboard analyses
A. baumannii ATCC 17978, E. coli BW25113, P. aeruginosa PAO1 and 
K. pneumoniae ATCC 43816 were grown overnight at 37 °C in 3 ml of 
LB medium. Cells were then diluted 1:10,000 into fresh LB. Enamine 
chemical potentiation by either SPR 741 (A. baumannii ATCC 17978, E. 
coli BW25113 and P. aeruginosa PAO1) or colistin (A. baumannii ATCC 
17978 and K. pneumoniae ATCC 43816) was determined by conduct-
ing standard chequerboard broth microdilution assays with eight 
twofold serially diluted concentrations of each generated molecule, 
and SPR 741 or colistin, against cells in a final volume of 100 µl. Costar 
96-well flat-bottom plates were used for bacterial growth. Plates were 
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incubated without shaking at 37 °C until untreated control cultures 
reached stationary phase. Plates were then read at 600 nm using a 
BioTek Neo2 plate reader.

FICI were calculated as follows:
FICi =

MICac

MICa
+ MICbc

MICb
= FICa + FICb  where MICa is the MIC of com-

pound A alone; MICac is the MIC of compound A in combination with 
compound B; MICb is the MIC of compound B alone; MICbc is the MIC 
of compound B in combination with compound A; FICa is the FIC of 
compound A and FICb is the FIC of compound B. Synergy is defined as 
FICI ≤ 0.5. Antagonism is defined as FICI ≥ 4.0.

Toxicity prediction
To estimate the toxicity profile of the generated molecules, we 
developed a predictor of clinical toxicity. Specifically, we trained a 
Chemprop-RDKit model on the ClinTox toxicity dataset42, which con-
sists of 1,478 molecules with two binary labels for each molecule: one 
indicating whether the compound was FDA approved and one indicat-
ing whether the compound failed clinical trials due to toxicity reasons. 
Since the two labels are almost perfectly inversely correlated (lack of 
clinical toxicity almost always implies FDA approval and vice versa in 
this dataset), we only used the clinical toxicity label. According to this 
label, 112 (7.58%) of the 1,478 molecules are toxic. We trained an ensem-
ble of ten Chemprop-RDKit models on this data using the same model 
settings as with the antibacterial prediction model. The model obtained 
an average test ROC-AUC of 0.881 ± 0.045 and an average test PRC-AUC 
of 0.514 ± 0.141 across tenfold cross-validation. We applied this model 
to our generated molecules to make toxicity predictions using the 
ensemble average prediction, with lower numbers indicating less toxic-
ity. For comparison, we also made predictions on all molecules in the 
ClinTox dataset, where the prediction for each molecule in the dataset 
is made by the one model for which that molecule was in the test set.

Animal toxicity model
Mouse model experiments were conducted according to the guidelines 
set by the Canadian Council on Animal Care, using protocols approved by 
the Animal Review Ethics Board and McMaster University under Animal 
Use Protocol no. 22-04-10. No animals were excluded from the analysis, 
and blinding was considered unnecessary. Six- to eight-week-old female 
C57BL/6N mice were administered 50 mg kg−1 En-10 or En-23 via intraperi-
toneal injection (n = 3). Phenotypic observations were monitored at 3, 6 
and 24 h postinjection. For chemical preparation, generated compounds 
were weighed and solubilized in 5% DMSO + 20% polyethylene glycol 
(PEG) 300 + 75% sterile distilled water. The solution was mixed thor-
oughly to ensure homogeneity. For mice in control groups (n = 3), the 
same weight-normalized volume of vehicle (DMSO + PEG 300 + sterile 
distilled water) was administered via intraperitoneal injection.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this paper, including training data and generated 
molecules, are available in the Supplementary Data. The data, along 
with trained model checkpoints and LC–MS and 1H-NMR spectra, are 
available at https://doi.org/10.5281/zenodo.10257839 (ref. 68). The 
ChEMBL database can be accessed from www.ebi.ac.uk/chembl.

Code availability
Code for data processing and analysis, property prediction model 
training and SyntheMol molecule generation is available at https://
github.com/swansonk14/SyntheMol (ref. 69). This code repository 
makes use of general cheminformatics functions from https://github. 
com/swansonk14/chemfunc as well as Chemprop model code from 
https://github.com/chemprop/chemprop.

References
1.	 Murray, C. J. et al. Global burden of bacterial antimicrobial 

resistance in 2019: a systematic analysis. Lancet 399,  
629–655 (2022).

2.	 Rice, L. B. Federal funding for the study of antimicrobial 
resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 
197, 1079–1081 (2008).

3.	 Ma, Y. et al. Considerations and caveats in combating  
ESKAPE pathogens against nosocomial infections. Adv. Sci. 7, 
1901872 (2020).

4.	 Tacconelli, E. et al. Discovery, research, and development  
of new antibiotics: the WHO priority list of antibiotic- 
resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 
(2018).

5.	 Lee, C. R. et al. Biology of Acinetobacter baumannii: pathogenesis, 
antibiotic resistance mechanisms, and prospective treatment 
options. Front. Cell. Infect. Microbiol. 7, 55 (2017).

6.	 Carracedo-Reboredo, P. et al. A review on machine learning 
approaches and trends in drug discovery. Comput. Struct. 
Biotechnol. J. 19, 4538–4558 (2021).

7.	 Gaudelet, T. et al. Utilizing graph machine learning within drug 
discovery and development. Brief. Bioinform. 22, bbab159 (2021).

8.	 Stokes, J. M. et al. A deep learning approach to antibiotic 
discovery. Cell 180, 688–702.e13 (2020).

9.	 Rahman, A. S. M. Z. et al. A machine learning model trained on 
a high-throughput antibacterial screen increases the hit rate of 
drug discovery. PLoS Comput. Biol. 18, e1010613 (2022).

10.	 Zeng, X. et al. Deep generative molecular design reshapes drug 
discovery. Cell Rep. Med. 3, 100794 (2022).

11.	 Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R. & Jensen, K. F. 
Generative models for molecular discovery: recent advances and 
challenges. WIREs Comput. Mol. Sci. 12, e1608 (2022).

12.	 Bian, Y. & Xie, X. Q. Generative chemistry: drug discovery with 
deep learning generative models. J. Mol. Model. 27, 71 (2021).

13.	 Liu, G. & Stokes, J. M. A brief guide to machine learning for 
antibiotic discovery. Curr. Opin. Microbiol. 69, 102190 (2022).

14.	 Gao, W. & Coley, C. W. The synthesizability of molecules proposed 
by generative models. J. Chem. Inf. Model. 60, 5714–5723 (2020).

15.	 Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S. & 
Hernández-Lobato, J. M. A model to search for synthesizable 
molecules. In Proc. 33rd International Conference on Neural 
Information Processing Systems (eds Wallach, H. M., Larochelle, 
H., Beygelzimer, A., d'Alché-Buc, F. & Fox, E. B.) 7937–7949 (Curran 
Associates Inc., 2019).

16.	 Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S. & 
Hernández-Lobato, J. M. Barking up the right tree: an approach to 
search over molecule synthesis DAGs. In Proc. 34th International 
Conference on Neural Information Processing Systems (eds 
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H.) 
6852–6866 (Curran Associates Inc., 2020).

17.	 Gottipati, S. K. et al. Learning to navigate the synthetically 
accessible chemical space using reinforcement learning. In Proc. 
37th International Conference on Machine Learning (eds Daumé III, 
H. & Singh, A.) 3668–3679 (PMLR, 2020).

18.	 Gao, W., Mercado, R. & Coley, C. W. Amortized tree generation 
for bottom-up synthesis planning and synthesizable 
molecular design. In Proc. 10th International Conference on 
Learning Representations (2022); https://openreview.net/
forum?id=FRxhHdnxt1

19.	 Pedawi, A., Gniewek, P., Chang, C., Anderson, B. M. & Bedem, 
H. van den. An efficient graph generative model for navigating 
ultra-large combinatorial synthesis libraries. In Proc. 36th 
International Conference on Neural Information Processing 
Systems (eds Oh, A. H., Agarwal. A., Belgrave, D. & Cho, K.) (2022); 
https://openreview.net/forum?id=VBbxHvbJd94

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.10257839
http://www.ebi.ac.uk/chembl
https://github.com/swansonk14/SyntheMol
https://github.com/swansonk14/SyntheMol
https://github.com/swansonk14/chemfunc
https://github.com/swansonk14/chemfunc
https://github.com/chemprop/chemprop
https://openreview.net/forum?id=FRxhHdnxt1
https://openreview.net/forum?id=FRxhHdnxt1
https://openreview.net/forum?id=VBbxHvbJd94


Nature Machine Intelligence | Volume 6 | March 2024 | 338–353 352

Article https://doi.org/10.1038/s42256-024-00809-7

20.	 Kocsis, L. & Szepesvári, C. Bandit based Monte-Carlo planning. In 
Proc. European Conference on Machine Learning, ECML 2006 Vol. 
4212 (eds Furnkranz, J. et al.) 282–293 (Springer, 2006).

21.	 Coulom, R. Efficient selectivity and backup operators in 
Monte-Carlo tree search. In Proc. International Conference on 
Computers and Games, CG 2006 Vol. 4630 (eds van den Herik, H. 
J. et al.) 72–83 (Springer, 2007).

22.	 Grygorenko, O. O. et al. Generating multibillion chemical space 
of readily accessible screening compounds. iScience 23, 101681 
(2020).

23.	 Stokes, J. M., Davis, J. H., Mangat, C. S., Williamson, J. R. & 
Brown, E. D. Discovery of a small molecule that inhibits bacterial 
ribosome biogenesis. eLife 3, e03574 (2014).

24.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE.  
J. Mach. Learn. Res. 9, 2579–2605 (2008).

25.	 Mendez, D. et al. ChEMBL: towards direct deposition of bioassay 
data. Nucleic Acids Res. 47, D930–D940 (2019).

26.	 Yang, K. et al. Analyzing learned molecular representations for 
property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

27.	 RDKit: open-source cheminformatics. RDKit https://www.rdkit.
org/. Accessed 28 Mar 2022.

28.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
29.	 Silver, D. et al. Mastering the game of Go with deep neural 

networks and tree search. Nature 529, 484–489 (2016).
30.	 Tversky, A. Features of similarity. Psychol. Rev. 84, 327–352 (1977).
31.	 Rogers, D. & Hahn, M. Extended-connectivity fingerprints.  

J. Chem. Inf. Model. 50, 742–754 (2010).
32.	 Arthur, D. & Vassilvitskii, S. K-Means++: the advantages of careful 

seeding. In Proc. Eighteenth Annu. ACM-SIAM Symp. Discrete 
Algorithms 1027–1035 (SIAM, 2007).

33.	 Maggiora, G., Vogt, M., Stumpfe, D. & Bajorath, J. Molecular 
similarity in medicinal chemistry: miniperspective. J. Med. Chem. 
57, 3186–3204 (2014).

34.	 Tanimoto, T. T. IBM Internal Report (IBM, 1957).
35.	 Nikaido, H. Molecular basis of bacterial outer membrane 

permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 
(2003).

36.	 Zurawski, D. V. et al. SPR741, an antibiotic adjuvant, potentiates 
the in vitro and in vivo activity of rifampin against clinically 
relevant extensively drug-resistant Acinetobacter baumannii. 
Antimicrob. Agents Chemother. 61, e01239-17 (2017).

37.	 Eckburg, P. B. et al. Safety, tolerability, pharmacokinetics, and 
drug interaction potential of SPR741, an intravenous potentiator, 
after single and multiple ascending doses and when combined 
with β-lactam antibiotics in healthy subjects. Antimicrob. Agents 
Chemother. 63, e00892-19 (2019).

38.	 Moffatt, J. H. et al. Colistin resistance in Acinetobacter  
baumannii is mediated by complete loss of lipopolysaccharide 
production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

39.	 O’Neill, A. J., Cove, J. H. & Chopra, I. Mutation frequencies for 
resistance to fusidic acid and rifampicin in Staphylococcus 
aureus. J. Antimicrob. Chemother. 47, 647–650 (2001).

40.	 Björkholm, B. et al. Mutation frequency and biological cost of 
antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. 
USA 98, 14607–14612 (2001).

41.	 Nicholson, W. L. & Maughan, H. The spectrum of spontaneous 
rifampin resistance mutations in the rpoB Gene of Bacillussubtilis 
168 spores differs from that of vegetative cells and resembles 
that of Mycobacterium tuberculosis. J. Bacteriol. 184, 4936–4940 
(2002).

42.	 Wu, Z. et al. MoleculeNet: a benchmark for molecular machine 
learning. Chem. Sci. 9, 513–530 (2018).

43.	 Melo, M. C. R., Maasch, J. R. M. A. & de la Fuente-Nunez, C. 
Accelerating antibiotic discovery through artificial intelligence. 
Commun. Biol. 4, 1050 (2021).

44.	 Yan, J. et al. Recent progress in the discovery and design of 
antimicrobial peptides using traditional machine learning and 
deep learning. Antibiotics 11, 1451 (2022).

45.	 Mahlapuu, M., Håkansson, J., Ringstad, L. & Björn, C. Antimicrobial 
peptides: an emerging category of therapeutic agents. Front. 
Cell. Infect. Microbiol. 6, 194 (2016).

46.	 Mahlapuu, M., Björn, C. & Ekblom, J. Antimicrobial peptides as 
therapeutic agents: opportunities and challenges. Crit. Rev. 
Biotechnol. 40, 978–992 (2020).

47.	 Gómez-Bombarelli, R. et al. Automatic chemical design using a 
data-driven continuous representation of molecules. ACS Cent. 
Sci. 4, 268–276 (2018).

48.	 Kang, S. & Cho, K. Conditional molecular design with deep 
generative models. J. Chem. Inf. Model. 59, 43–52 (2019).

49.	 Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. 
Self-referencing embedded strings (SELFIES): a 100% robust 
molecular string representation. Mach. Learn. Sci. Technol. 1, 
045024 (2020).

50.	 Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. L. 
Constrained graph variational autoencoders for molecule 
design. In Proc. 32nd International Conference on Neural 
Information Processing Systems (eds Wallach, H. M., Larochelle, 
H., Grauman, K. & Cesa-Bianchi, N.) 7806–7815 (Curran 
Associates Inc., 2018).

51.	 You, J., Liu, B., Ying, R., Pande, V. & Leskovec, J. Graph 
convolutional policy network for goal-directed molecular graph 
generation. In Proc. 32nd International Conference on Neural 
Information Processing Systems (eds Wallach, H. M., Larochelle, 
H., Grauman, K. & Cesa-Bianchi, N.) 6412–6422 (Curran Associates 
Inc., 2018).

52.	 Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational 
autoencoder for molecular graph generation. ICML 80,  
2323–2332 (2018).

53.	 Jin, W., Barzilay, R. & Jaakkola, T. Hierarchical generation of 
molecular graphs using structural motifs. ICML 119, 4839–4848 
(2020).

54.	 Bilodeau, C. et al. Generating molecules with optimized aqueous 
solubility using iterative graph translation. React. Chem. Eng. 7, 
297–309 (2022).

55.	 Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual 
libraries of over 11 billion compounds. Nature 601, 452–459 
(2022).

56.	 Yang, X., Zhang, J., Yoshizoe, K., Terayama, K. & Tsuda, K. ChemTS: 
an efficient python library for de novo molecular generation. Sci. 
Technol. Adv. Mater. 18, 972–976 (2017).

57.	 Qian, H., Lin, C., Zhao, D., Tu, S. & Xu, L. AlphaDrug: protein target 
specific de novo molecular generation. PNAS Nexus. 1, pgac227 
(2022).

58.	 Jin, W., Barzilay, R. & Jaakkola, T. Multi-objective molecule 
generation using interpretable substructures. ICML 119,  
4849–4859 (2020).

59.	 Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical 
syntheses with deep neural networks and symbolic AI. Nature 
555, 604–610 (2018).

60.	 Coley, C. W. et al. A robotic platform for flow synthesis of organic 
compounds informed by AI planning. Science 365, eaax1566 
(2019).

61.	 Walters, W. P. & Murcko, M. Assessing the impact of generative AI 
on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).

62.	 Corsello, S. M. et al. The Drug Repurposing Hub: a 
next-generation drug library and information resource. Nat. Med. 
23, 405–408 (2017).

63.	 Weininger, D. SMILES, a chemical language and information 
system. 1. Introduction to methodology and encoding rules. J. 
Chem. Inf. Model. 28, 31–36 (1988).

http://www.nature.com/natmachintell
https://www.rdkit.org/
https://www.rdkit.org/


Nature Machine Intelligence | Volume 6 | March 2024 | 338–353 353

Article https://doi.org/10.1038/s42256-024-00809-7

64.	 Paszke, A. et al. PyTorch: an imperative style, high-performance 
deep learning library. In Proc. 33rd International Conference 
on Neural Information Processing Systems (eds Wallach, H. M., 
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F. & Fox, E. B.) 
8026–8037 (2019).

65.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. 
Mach. Learn. Res. 12, 2825–2830 (2011).

66.	 Daylight Theory. SMARTS - a language for describing molecular 
patterns. Daylight Chemical Information Systems Inc. www.
daylight.com/dayhtml/doc/theory/theory.smarts.html (2022).

67.	 Wildman, S. A. & Crippen, G. M. Prediction of physicochemical 
parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 
39, 868–873 (1999).

68.	 Swanson, K. et al. Generative AI for designing and validating 
easily synthesizable and structurally novel antibiotics: data and 
models. Zenodo https://doi.org/10.5281/zenodo.10257839 (2023).

69.	 Swanson, K. & Liu, G. swansonk/SyntheMol: SyntheMol. Zenodo 
https://doi.org/10.5281/zenodo.10278151 (2023).

70.	 Liu, G. et al. Deep learning-guided discovery of an antibiotic 
targeting Acinetobacter baumannii. Nat. Chem. Biol. 19,  
1342–1350 (2023).

Acknowledgements
This research was kindly supported by the Weston Family Foundation 
(POP and Catalyst to J.M.S.); the David Braley Centre for Antibiotic 
Discovery (J.M.S.); the Canadian Institutes of Health Research 
(J.M.S.); a generous gift from M. and M. Heersink (J.M.S.) and the 
Chan-Zuckerberg Biohub (J.Z.). We thank Y. Moroz for his help 
accessing and answering our questions about the Enamine REAL 
Space building blocks, reactions and molecules. We thank G. Dubinina 
for help obtaining generated compounds. We thank M. Karelina, 
J. Miguel Hernández-Lobato, A. Tripp and M. Segler for insightful 
discussions about our property prediction and generative methods. 
We thank J. Boyce and A. Wright for providing mutant strains of  
A. baumannii used in this study. K.S. acknowledges support from the 
Knight-Hennessy scholarship.

Author contributions
Conceptualization was carried out by K.S., G.L., J.Z. and J.M.S. Model 
development was performed by K.S. and G.L. Biological validation was 

carried out by D.B.C., A.A. and J.M.S. K.S., G.L., D.B.C., J.Z. and J.M.S. 
wrote the paper. J.Z. and J.M.S. supervised the work.

Competing interests
These authors declare the following competing interests: K.S. is 
employed part-time by Greenstone Biosciences; J.Z. is on the scientific 
advisory board of Greenstone Biosciences and J.M.S. is cofounder 
and scientific director of Phare Bio. The other authors declare no 
competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s42256-024-00809-7.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s42256-024-00809-7.

Correspondence and requests for materials should be addressed to 
James Zou or Jonathan M. Stokes.

Peer review information Nature Machine Intelligence thanks  
Feixiong Cheng and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)  
holds exclusive rights to this article under a publishing agreement 
with the author(s) or other rightsholder(s); author self-archiving  
of the accepted manuscript version of this article is solely  
governed by the terms of such publishing agreement and  
applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/natmachintell
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://doi.org/10.5281/zenodo.10257839
https://doi.org/10.5281/zenodo.10278151
https://doi.org/10.1038/s42256-024-00809-7
https://doi.org/10.1038/s42256-024-00809-7
https://doi.org/10.1038/s42256-024-00809-7
http://www.nature.com/reprints


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00809-7

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Additional Property Prediction Model Development. 
(a) Normalized growth of A. baumannii ATCC 17978 in biological duplicate 
for each of the three training set chemical libraries. Note: compounds with 
normalized growth > 3 are removed for visual purposes. The R2 values are the 
coefficient of determination. (b) Receiver operating characteristic (ROC) 
curves and (c) precision-recall (PRC) curves for the Chemprop, Chemprop-
RDKit, and random forest models. For each model, the black lines show the 
performance of each of the ten models in the ensemble and the blue curve shows 

the average. (d, e) Model performance of each of our three property prediction 
models when generalizing between our three training set libraries. Values on 
the diagonal are the average test set performance of a model on a single library 
across tenfold cross-validation. Values on the off-diagonals are the result of 
applying an ensemble of ten models trained on one library to a different library 
and evaluating those predictions. (d) Performance measured by area under the 
receiver operating characteristic curve (ROC-AUC). (e) Performance measured 
by area under the precision-recall curve (PRC-AUC).
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Extended Data Fig. 2 | REAL Space Analysis, Comparisons to Training Set, 
and Reactions. (a) The cumulative percent of molecules in REAL Space that 
can be produced by each of the 169 REAL chemical reactions. (b) The percent of 
molecules in REAL Space that include each of the REAL building blocks. (c) The 
molecular weight distribution of a random sample of 25,000 REAL molecules 

(blue), the REAL building blocks (black), and our training set molecules (red). (d) 
The cLogP distribution of a random sample of 25,000 REAL molecules (blue), 
the REAL building blocks (black), and our training set molecules (red). (e) The 
remaining 5 REAL chemical reactions we used (first 8 in Fig. 4b), along with the 
number and percent of REAL molecules produced by each reaction.
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Extended Data Fig. 3 | REAL Building Block and Full Molecule Scores from 
Chemprop-RDKit and Random Forest. (a, b) The distribution of antibacterial 
model scores on the REAL building blocks using the (a) Chemprop-RDKit or 
(b) random forest models. (c, d) The correlation between the antibacterial 

model score of a REAL molecule and the average antibacterial model score of its 
constituent building blocks using the (c) Chemprop-RDKit or (d) random forest 
models. The R2 values are the coefficient of determination.
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Extended Data Fig. 4 | Comparison of Generated Sets with and without Building Block Diversity. (a–c) The frequency with which building blocks were used in the 
generated molecules of SyntheMol, with and without the building block diversity score penalty for (a) Chemprop, (b) Chemprop-RDKit, and (c) random forest.
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Extended Data Fig. 5 | Model Scores by Rollout from Chemprop-RDKit and 
Random Forest. (a, b) Violin plots of the distribution of antibacterial model 
scores for every 2,000 rollouts of the MCTS algorithm over 20,000 rollouts. 

SyntheMol uses the (a) Chemprop-RDKit or (b) random forest models for 
antibacterial prediction scores. The lines in each violin indicate the first quartile, 
the median, and the third quartile.
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Extended Data Fig. 6 | Additional Analysis of Chemprop Generated and 
Selected Sets. (a) The percent of building blocks that appear at different 
frequencies among the generated or selected compounds by SyntheMol with 
Chemprop. Building blocks are assigned to bins on the x-axis based on the 
number of generated or selected compounds that contain that building block, 

with the final bin including building blocks that appear in at least six compounds 
(max 137). (b) The distribution of chemical reactions used by the generated or 
selected compounds by SyntheMol with Chemprop. (c) A t-SNE visualization of 
the training set along with all generated and selected molecules from each of the 
three property predictor models.
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Extended Data Fig. 7 | Analysis of Chemprop-RDKit Generated and Selected 
Sets. (a) The percent of building blocks that appear at different frequencies 
among the generated or selected compounds by SyntheMol with Chemprop-
RDKit. Building blocks are assigned to bins on the x-axis based on the number 
of generated or selected compounds that contain that building block, with the 
final bin including building blocks that appear in at least six compounds (max 
185). (b) The distribution of chemical reactions used by the generated or selected 
compounds by SyntheMol with Chemprop-RDKit. (c–f) A comparison of the 
properties of the 25,828 molecules generated by SyntheMol with the Chemprop-

RDKit antibacterial model and the 50 molecules selected from that set after 
applying post-hoc filters. (c) The distribution of nearest neighbour Tversky 
similarities between the generated or selected compounds and the active 
molecules in the training set. (d) The distribution of nearest neighbor Tversky 
similarities between the generated or selected compounds and the known 
antibacterial compounds from ChEMBL. (e) The distribution of Chemprop-RDKit 
antibacterial model scores on the generated or selected compounds, as well as on 
a random set of 25,000 REAL molecules. (f) The distribution of nearest neighbor 
Tanimoto similarities among the generated or selected compounds.
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Extended Data Fig. 8 | Analysis of Random Forest Generated and Selected 
Sets. (a) The percent of building blocks that appear at different frequencies 
among the generated or selected compounds by SyntheMol with random 
forest. Building blocks are assigned to bins on the x-axis based on the number 
of generated or selected compounds that contain that building block, with 
the final bin including building blocks that appear in at least six compounds 
(max 212). (b) The distribution of chemical reactions used by the generated or 
selected compounds by SyntheMol with random forest. (c–f) A comparison 
of the properties of the 27,396 molecules generated by SyntheMol with the 

random forest antibacterial model and the 50 molecules selected from that set 
after applying post-hoc filters. (c) The distribution of nearest neighbor Tversky 
similarities between the generated or selected compounds and the active 
molecules in the training set. (d) The distribution of nearest neighbor Tversky 
similarities between the generated or selected compounds and the known 
antibacterial compounds from ChEMBL. (e) The distribution of random forest 
antibacterial model scores on the generated or selected compounds as well as on 
a random set of 25,000 REAL molecules. (f) The distribution of nearest neighbor 
Tanimoto similarities among the generated or selected compounds.
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Extended Data Fig. 9 | Additional In Vitro Validation. (a) Gram-negative 
bacterial isolates tested for growth inhibition against SPR 741 or colistin. 
Experiments were performed in biological duplicate. Error bars represent 
absolute range of optical density measurements at 600 nm. (b) Heat map 
summarizing MICs of 58 randomly selected compounds from the REAL Space 
against A. baumannii ATCC 17978 in I) LB medium, II) LB medium + a quarter 
MIC SPR 741, and III) LB medium + a quarter MIC colistin. Compounds were 
tested at concentrations from 256 µg/mL to 4 µg/mL in two-fold serial dilutions. 
Lighter colours indicate lower MIC values for each random REAL molecule. 
No compounds displayed potent antibacterial activity using the threshold of 
MIC ≤ 8 µg/mL. Experiments were performed in at least biological duplicate. 

(c, d) Chequerboard analysis to quantify synergy, as defined by FICI, with SPR 
741 or colistin against Gram-negative isolates. Chequerboard experiments 
were performed using two-fold serial dilution series with the maximum and 
minimum concentrations of the potentiator (x-axis) and compound (y-axis) 
shown in µg/mL. Darker blue represents higher bacterial growth. Experiments 
were performed in biological duplicate. The mean growth of each well is shown. 
(c) Chequerboard assays using the six bioactive compounds, in combination 
with colistin, against A. baumannii ATCC 17978. (d) Chequerboard assays using 
rifampicin – a control antibiotic – in combination with SPR 741 or colistin against 
a panel of Gram-negative bacterial species.
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Extended Data Fig. 10 | Toxicity Predictions. Predictions of the probability 
of clinical toxicity using an ensemble of ten Chemprop-RDKit models trained 
on the ClinTox dataset. ‘Non-toxic compounds’ show the toxicity predictions 
of the model on the non-toxic molecules in the dataset (n = 1,372), where each 
molecule’s prediction score comes from the one model in the ensemble for which 

that molecule was in the test set. ‘Toxic compounds’ shows the same toxicity 
predictions for the toxic molecules in the dataset (n = 112). ‘Selected six’ shows 
the average prediction of the ensemble of ten models on the six potent generated 
molecules. Blue horizontal lines represent the mean predictions for each set.
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